On incidence coloring and star arboricity of graphs
نویسنده
چکیده
In this note we show that the concept of incidence coloring introduced in [BM] is a special case of directed star arboricity, introduced in [AA]. A conjecture in [BM] concerning asmyptotics of the incidence coloring number is solved in the negative following an example in [AA]. We generalize Theorem 2.1 of [AMR] concerning the star arboricity of graphs to the directed case by a slight modification of their proof, to give the same asymptotic bound as in the undirected case. As a result, we get tight asymptotic bounds for the maximum incidence coloring number of a graph in terms of its degree. 1 Connection between star arboricity and incidence coloring A star forest is a graph whose connected components are stars. A directed star forest is a graph whose connected components are directed stars (edges are directed out of the center). The star arboricity of an undirected graph G (introduced in [AK]) denoted st(G) is the smallest number of star forests needed to cover G. For a directed graph D, the directed star arboricity denoted dst(D), is the smallest number of directed star forests needed to cover D. In [BM], the concept of incidence coloring of graphs is introduced. ι(G) is the smallest number of colors needed to color the incidences (incident vertex-edge pairs) of an undirected graph G so that neighborly incidences do not receive the same color. Two incidences (v, e) and (w, f) are said to be neighborly if (i) v = w, (ii) e = f , or (iii) {v, w} is one of the edges e, f . If we think of an incidence pair as a directed edge, directed toward the vertex, we are coloring the edges of the symmetrically directed graph S(G) (we replace
منابع مشابه
Some results on incidence coloring, star arboricity and domination number
Two inequalities are established connecting the graph invariants of incidence chromatic number, star arboricity and domination number. Using these, upper and lower bounds are deduced for the incidence chromatic number of a graph and further reductions are made to the upper bound for a planar graph. It is shown that cubic graphs with orders not divisible by four are not 4-incidence colorable. Sh...
متن کاملThe incidence game chromatic number of (a, d)-decomposable graphs
The incidence coloring game has been introduced in [S.D. Andres, The incidence game chromatic number, Discrete Appl. Math. 157 (2009), 1980– 1987] as a variation of the ordinary coloring game. The incidence game chromatic number ιg(G) of a graph G is the minimum number of colors for which Alice has a winning strategy when playing the incidence coloring game on G. In [C. Charpentier and É. Sopen...
متن کاملIncidence Coloring Game and Arboricity of Graphs
An incidence of a graph G is a pair (v, e) where v is a vertex of G and e an edge incident to v. Two incidences (v, e) and (w, f) are adjacent whenever v = w, or e = f , or vw = e or f . The incidence coloring game [S.D. Andres, The incidence game chromatic number, Discrete Appl. Math. 157 (2009), 1980–1987] is a variation of the ordinary coloring game where the two players, Alice and Bob, alte...
متن کاملInduced and Weak Induced Arboricities
We define the induced arboricity of a graph G, denoted by ia(G), as the smallest k such that the edges of G can be covered with k induced forests in G. This notion generalizes the classical notions of the arboricity and strong chromatic index. For a class F of graphs and a graph parameter p, let p(F) = sup{p(G) | G ∈ F}. We show that ia(F) is bounded from above by an absolute constant depending...
متن کاملEdge-colorings avoiding rainbow and monochromatic subgraphs
For two graphs G and H , let the mixed anti-Ramsey numbers, maxR(n; G, H), (minR(n; G, H)) be the maximum (minimum) number of colors used in an edge-coloring of a complete graph with n vertices having no monochromatic subgraph isomorphic to G and no totally multicolored (rainbow) subgraph isomorphic to H . These two numbers generalize the classical anti-Ramsey and Ramsey numbers, respectively. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 163 شماره
صفحات -
تاریخ انتشار 1997